CS 2113
Software Engineering

Java 4: Class Organization, Abstraction

Professor Tim Wood - The George Washington University
e

This Time...

* Project 1: how was it?

« More OOP Concepts

- Abstract Classes
* Polymorphism
* Introspection
- Interfaces

+ Also
* Project 2

* This is not actually a quiz
Java Quiz™!
- Put code in the animals package!

- Store two types of pets---cats and dogs

- When you create a pet, constructor takes a name

+ All pets have a printName() function that prints the name
 All pets have a makeNoise() function
« Cats say "meow" and dogs say "woof"

* Your main method should:

+ Create two dogs named Fido and Spot

- Create three cats named Fluffy, Mowzer, and Pig
« Use ONE ArrayList to store all 5 pets

 Print the names of all pets

- Call the makeNoise function on all the pets

Files and Collections

» Let’s:
 Read all lines in a file

» Add each line to an Array List
* Print out a random entry from the array list

- Modify files.RandReader.java

Hierarchies and
Abstraction

Use the benetits of OOP

» Use a super class to store common
functionality

* Why?

Use the benetits of OOP

» Use a super class to store common
functionality

* Why?
- Code reuse - no copy/paste
- What if you need to add an "age" field to all pets?

- Polymorphism - treat similar objects the same way

ArrayList<Pet> 1list = new ArrayList<Pet>();
list.add(new Cat("Fluffy", 9));
list.add(new Dog("Fido"));

for(Pet s: 1list) {
s.makeNoise();

}

Abstraction

- Sometimes it doesn't make sense to implement

the functions in a class
- Would we ever want to instantiate a Pet object?

Shape Canvas

drawOutline drawShape(Shape s)
drawFilled

T

Triangle Square

drawQutline drawQutline
drawFilled drawFilled

- What would go in Shape's functions?

- Abstract classes define the structure of a class,
but not its actual implementation

Abstract Classes

- Mark class and methods with abstract keyword

* No function body for abstract methods
« Class can still have some real data and methods

- Child classes must implement all abstract
methods

* You can never instantiate an abstract class

public abstract class Shape {
public abstract void drawOutline();
public abstract void drawFilled();

}

public class Triangle extends Shape {
public void drawOutline() { ... }
public void drawFilled() { ... }

}

Drawing Shapes

Look at the shapes package
- What is the class hierarchy?

Create an ArrayList and put a Circle, Rectangle,
and Square into it

Draw the filled version of each shape to the

screen with a for loop
- Get each shape out of the list and then call its drawFilled()

Add some more shapes to create a beautiful work
of art

10

Class Hierarchies

- Look at the "dumbshapes” package

* Why is this dumb?

11

Polymorphism

» Why does this work?

ArrayList<Shape> list = new ArrayList<Shape>();

list.add(new Circle(10, 10, 5, Color.blue));

list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.get(0).drawFilled();

* but not this?

ArrayList list = new ArrayList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Dog("Fido"));

list.get(0) . .drawFilled();

12

Java 1s "strongly typed"

- The JVM knows the type (class) of each object
* It enforces rules based on those types

 At|?222222 |time it will decide if your code calls
functions that a type does not support

ArrayList list = new ArraylList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Dog("Fido"));

list.get(0) ..drawFilled();

- The array holds items of type Object

« That class doesn't have a drawFilled function!

13

Casting

- Casting objects does let us get around type ru

// In package dumbshapes
ArrayList list = new ArraylList();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.add(new Square(4, 6, 5, Color.GREEN));

((Circle) list.get(0)).drawFilled();
((Rectangle) list.get(l)).drawFilled();
((Square) list.get(2)).drawFilled();

- What happens if we cast to the wrong type?

esS.

14

But Remember:

« An object can do everything that its parent can do!

ArrayList<Shape> list = new ArrayList<Shape>();

list.add(new Circle(10, 10, 5, Color.blue));
list.add(new Rectangle(10, 5, 3, 6, Color.RED));
list.get(0).drawFilled(); // OK since Circle's are Shapes

- What about the opposite?

* Is a Shape a Circle?
- Is a Square a Rectangle?
- Is a Rectangle a Square?

ArrayList<Shape> list = new ArrayList<Shape>();
list.add(new Circle (10, 10, 5, Color.blue));
int r = list.get(0).radius; // Is this OK?

15

Introspection

 Polymorphism must know class of each object

* Introspection allows you to ask questions about
an object or class

- instanceof operator asks if an object is part of

a particular class

for (Shape s: shapes) {

if (s instanceof Rectangle) { _
s.drawOutline(); What happens if |

} have a Circle,

else { R =l -
s.drawFilled(); ectang e’?a d
if (s instanceof Circle) { Square.

r = ((Circle)s).radius;

}
}
16

Organizing a zoo

« Suppose we have a program about animals...
- Cats, dogs, wolves, bears, lions, unicorns, etc

 They do things:
- eat

* roam
 make noise

« What classes and functions do we need?
- How would you organize them?

17

Consider these animals...

- How would they fit into a class tree?
- Pandas and Puppies are both cute... i(

18

Multiple Inheritance

« What if it makes sense for a class to inherit from
two parent classes?
- Java does not allow you to extend multiple classes

 Use an Interface

* Looks like an abstract class
« List of functions that must

be implemented

. Cannot include data! public interface Cuddly {

public void snuggle();

}
public class PandaBear extends Bear implements Cuddly {
public void snuggle() { ... }
// ...

}

Why use an interface?

* You can only have one parent
- But you can implement many interfaces

« Useful when:

- Some subclasses do not implement a function
« Objects from several classes do implement a function

* Vegetarian interface implemented by:

- Brontosaurus (child of Dinosaur)
- Koala (child of Marsupial, also implements Cuddly)
« Hindu (child of Human)

20

Animals and pets

Support as many of these animals as possible:

Cats, dogs, wolves, bears, lionmns,
unicorns, parrots, grizzly bears,

panda bears, pigeons, cuddly puppies,
panthers, horses, talking bears.

Add code to the animals package

Make them do interesting things

- Pets have names
+ Cuddly animals snuggle In groups of at
* Felines all roar
« What else?

least 2!

Abstract classes? Interfaces?

21

Some animals

abstract Animal

age

die()

eat()

sleep()
exercise()
move()
makeNoise()

]

abstract Feline

furLength
lives

makNoise()

T T

Panther

eat()

«interface» Pet

getName()

Cat

name

getName

abstract Canine

tailLength

Dog

22

An Intertace 1s a Contract

- If you implement an interface, you promise to
support all of the methods deflned by the interface

HyperCube Shape | [canvas
{5
drawOutline() drawShape(Shape s)
drawOutline() drawFilled()
drawFilled()
Triangle Square
drawOutline() drawOutline()
drawFilled() drawFilled()
print(print
v
TextDocument «interface» Jpglimage
Printable
print() print()
print()

* Why is this useful???

23

Intertaces & Polymorphism

* Polymorphism lets us treat all classes that:

* Implement the same interface
 Are children of the same parent

* As if they are that parent or interface

public void main()

{

ArrayList<Printable> printme = new ArrayList<Printable>();
printme.add(new Triangle());
printme.add(new Square());
printme.add(new PdfDocument());
printme.add(new TextDocument());
for (Printable p : printme) { p.print(); }
}

Abstract and Interface

Question 1:
« Can an abstract class have data members? Can an interface?

Question 2:

- Can you include the body of a function in an abstract class? In
an interface?

Question 3:

- What happens if a subclass does not implement one of the
methods in an abstract parent or an interface?

Question 4:

- Can you instantiate an object of an abstract type? an
interface?

25

Abstract and Interface

Can an abstract class have data members? Can an

Interface?

« Abstract classes can still define data members, but an interface cannot---
interfaces are only about functions

Can you include the body of a function in an abstract

class? In an interface?

- An abstract class may have regular methods that are fully defined, but an
interface cannot

What happens if a subclass does not implement one of
the methods in an abstract parent or an interface?

* You will get a compilation error due to the missing method

Can you instantiate an object of an abstract type? an

Interface?

« Nope---it is incomplete, so you can't create one. But you can do:
e AbstractClass a = new ChildClassOfA();

26

Intertaces for Sorting

 Sorting is a very common requirement

* How do you sort:

 Numbers
- Letters

« Names

« Animals

« Customers

- Basic operation in any sorting algorithm:
- |s element A higher or lower than element B?

27

Comparable Interface

- Implement the Comparable Interface to define
how to compare instances of a class

» Allows you to use a generic sorting function

List<Name> names = new ArrayList<Name>();

// add elements to list

Collections.sort (names);
// list is magically sorted!

« Must implement the CompareTo(b) function
* Return 0 if identical
* Lessthan O if this < borgreaterthanOif this > b

28

Sorting Students

Look at the code in the "interfaces" package
Student: stores name and GPA

StudentSort: adds a few names to a list, tries to sort
- Uses Collections.sort()

To allow a list of Names to be sorted, you must
implement the Comparable<Student> interface

Add code to implement CompareTo<Student>

« Sort students by GPA
« Challenge: Use last name and then first name as tie breakers

- String already supports the compareTo() function, so you can
use that as a base!

29

Summary

« Abstract classes

« Define structure of subclasses and force them to
Implement complete behavior

* |Interfaces

 Define a list of functions that the implementor of an
iInterface must include

« One class can implement multiple interfaces

- Ways to group similar classes and enforce what
they define

30

hﬁ) -1 #r.-l

ZOMBIE INFESTATION
SIMULATOR

Zombie Sim Structure

« ZombieSim Tips/Best Practices:

— Think carefully about class
structure and the data and

* main()

* instantiates city functions in each one
. IOop update C|ty and draw s Think carefully about the "is

. a" versus "has a" relationship
° C|ty when designing your classes
- It is always better to have a
class interact with another

private Walls[][]

* update using an API (functions) instead
o draw of directly accessing data
. populate() — Use classes to encapsulate

both data and functions. A City
what else to add??? class should be responsible for
everything to do with the city
and a Cat class would be
responsible for everything to do
with cats, etc.

Sharing Data

 Object Oriented Components:

- Clarifies software design
 Restricts communication and data sharing

» How did you stop humans from running into
walls?

public class City { public class Human {
private boolean walls[][]; public void update()
// e o o o {

/] 22?2
}

33

Sharing Data

» Let me count the ways...
- Make walls a public static object (or protected)

// in City.java
public static boolean walls[][];
// in Human.java
if(City.walls[x][y] == true) { ... }

- Pass current city with the constructor:

people[p] = new Human(x, y, this);

« Could set walls to be public
 Or, have a public function in City to mediate access

// in City.java

public boolean isFree(int x, int y) { ... }
// in Human.java

if (isFree(x,y) { ... }

34

T1ps on Sharing

Some general tips:

Only use static if there will only be a single

object of the type at a time

- What if later we want to be able to simultaneously run several city
simulations?

Best practice is to expose a function instead of a
raw variable
- Lets you limit to read only or read/write, can add error checking

Think about what direction to expose class
information

« Should Human know about City or should City know about
Human?

35

