
The George Washington University

Java 3: More OOP

CS 2113 Software Engineering

Quiz time!
• Hopefully you finished Java Module 2 and read

through the book!
• Solve question 1 on the worksheet

!2

O.O. Design
• Modern software engineering is largely about

designing classes, deciding how they relate, and
deciding their functions + data

• Good design:
• is simple: remove unnecessary classes, functions, and data

• is compartmentalized: separate functionality, isolate data

• has clean interfaces: inputs and outputs should make sense

• is reusable: create general purpose code when possible

!3

UML
• Unified Modeling Language

• Formal way to describe programs, components, functionality
• Designed for any object oriented programming language

• Defines 14 standard diagram types

• Structural diagrams
• Defines the pieces 

of the system and  
their relationships

• Behavioral diagrams
• Describe how the pieces 

interact

!4

Class Diagrams
• Tell us how different classes are related
• Lists key methods and data

!5

Simplified Class Diagrams
• How are these related?

• Human, Student, Hand, Pen, and Pencil?

!6

Human

Student

Pen

Pencil

Hand

"is a" "associated with"

Class Diagram Example

!7

Class diagrams describe the software's
components and how they relate

Human Hand

WritingUtensil

Pen

Pencil
Student

owns

holds

has 2

"is a" "associated with"

Arrow Direction
• The arrow shows which class must know

something about the other

• A child must "know" about its parent so it can
extend it
• The parent can be oblivious to that fact

!8

Human Hand

Student
"is a” (inherits from)

"associated with"

From Diagram to Code

!9

public class Student  
 extends Human
{
private WritingUtensil wu;

public Student() {
super();
wu = new Pen();
rightHand = new Hand(wu);

}
}

Human Hand

WritingUtensil

Pen

Pencil
Student

public class Human {
protected Hand leftHand;
protected Hand rightHand;

public Human() {
leftHand = new Hand();
rightHand = new Hand();

}
}

Adding More Detail
• Full UML diagrams also include:

• Attributes (class data elements)
• Methods (class functions)

• Also uses a whole bunch of arrow types

!10

Human

name: String
age: int

leftHand: Hand
rightHand: Hand

walk()
eat()

sleep()

Student
school: String
major: String

study()
goToClass()

lists the data
and functions
added to the
parent class

Voice Mail System
• Problem description:

• Is that enough to build the system?

• Requirements Engineering
• Science behind formally specifying what a system must do

!11

Phone rings, is not picked up, caller
invited to leave message; owner of
mailbox can later retrieve message

Deciding on the parts
• Things:

• Mailboxes
• Messages
• Users
• Phone numbers
• Dates

• Actions:
• Record message
• Replay message
• ...
• Remove messages?
• Next/Previous Message?

!12

A voice mail system records
calls to multiple mailboxes.
The system records each
message, the caller's number,
and the time of the call. The
owner of a mailbox can play
back saved messages.

MailSystem Class Diagram
• What are the components?

• What are their important functions and data?

• How are they related?
• Annotate arrows

!13

Inherits from

Makes use of

Work with 1-2
other students
and draw your
diagram on the

worksheet

MailSystem Class Diagram
• What are the components?

• What are their important functions and data?

• How are they related?
• Annotate arrows

!14

Inherits from

Makes use of
Client request: We

also want to support
text messages on the

same system!

How do things interact?
• Class diagram tells who interacts with who

• But doesn't illustrate how they interact

• UML Sequence Diagrams
• Show the steps required to do something

!15

Good Practices
• Diagram should be loosely connected

• Only make a class depend on another if it really needs it

• Use Inheritance to replace similar functionality
• Red balls, green balls, and orange squares
• Chickens, cows, and tanks

• Focus on key features and level of detail
• UML can be a waste of time, so apply to the useful parts

• Iterate design and implementation
• Don't try to do everything the first time
• Build and test components in stages

!16

UML Tool
• Violet UML tool makes it easy to draw diagrams

• Homepage: http://alexdp.free.fr/violetumleditor/
• Download from 2113 Java Module 3 page!

!17

choose mode:
Select
Class

Inherits from...
Is associated...

double click
to edit

http://alexdp.free.fr/violetumleditor/page.php

Banking
• Use VioletUML to represent the following program

!18

You have been hired by a bank to write software to track its accounts and
clients. Your bank software must keep track of two kinds of accounts: Checking
and Savings. Both these account types should support making deposits and
withdraws. The Checking account should also allow customers to write a check
and the Savings account should support adding interest.

The bank needs to be able to keep track of all of its customers, each of whom
may have one or more accounts. Every month, the bank needs to be able to
print out a list of customers and the balance inside each of their accounts. You
can assume that all customers have a unique name and that bank accounts
are assigned a unique ID number.

Draw a UML diagram to represent the software you would design to handle this
scenario. Be sure to mark the important functions and data members for each
class, and use the different arrow types to indicate which classes inherit or are
associated with others.

Classes and Memory
• UML Class Diagrams help us visualize relations

• Write the code  
for these classes
• Just define the functions 

and data members

• Fill in worksheet
• Ignore the main function and memory layout for now…
• You do not need to fill in the method content, just put the names

of methods and variables in the right places

!19

Classes, Objects, and Memory
• What will memory look like  

after running this code?

!20

Stack
Address Name Contents

10000 s 65

10008 v
10016 v2

10016 c

Heap
Address Contents

500000

public class Vehicle {
public int speed;
private int acceleration;
public static int count;
// ...

}

public class Car extends Vehicle {
 private String model;
 public void turnKey(){ … }

 public static void main() {
 int s = 65;
 Vehicle v;
 Vehicle v2 = new Vehicle();
 v2.speed = s;
 Car c = new Car("Honda");
 c.count = 50;
 }

Static Object Memory

!21

// A simple static object. Note: all members (data and methods)
// are declared with the "static" keyword.

class ObjX {

 static int i;

 static void print ()
 {

 System.out.println ("i=" + i);
 }

} // All static members

// The class that has "main"

public class StaticExample {

 public static void main (String[] argv)
 {
 // Refer to a member of ObjX using the class name.
 ObjX.i = 5;

 // Call a method using the class name and dot-operator.
 ObjX.print();

 }
}

Stack

Heap

Globals

Static Object Memory

!22

// A simple static object. Note: all members (data and methods)
// are declared with the "static" keyword.

class ObjX {

 static int i;

 static void print ()
 {

 System.out.println ("i=" + i);
 }

} // All static members

// The class that has "main"

public class StaticExample {

 public static void main (String[] argv)
 {
 // Refer to a member of ObjX using the class name.
 ObjX.i = 5;

 // Call a method using the class name and dot-operator.
 ObjX.print();

 }
}

Stack

Heap

Globals

i

Dynamic Object Memory

!23

// Dynamic object definition
class ObjX {

 int i;

 void print () {
 System.out.println ("i=" + i);

 }

} // NO “static” for either member!

public class DynamicExample1 {

 public static void main (String[] argv)
 {
 // First create an instance with space from the heap.

 ObjX x = new ObjX ();

 // Now access members via the variable and the dot-operator.
 x.i = 5;
 x.print();

 }
}

Stack

Heap

Globals

Static/Dynamic (HW)

!24

// Static reference to dynamic object
class ObjX {

 int i;

 void print () {
 System.out.println ("i=" + i);

 }

} // same as before

public class DynamicExample2 {

 // A simple variable declaration.
 static ObjX x;

 public static void main (String[] argv)
 {
 // First create an instance, with space from the heap.
 x = new ObjX ();
 // Now access members via the variable and the dot-operator.
 x.i = 5;
 x.print();
 }
}

Stack

Heap

Globals

Multiple Objects

!25

// Multiple dynamic objects
class ObjX {

 int i;

 void print () {
 System.out.println ("i=" + i);

 }

} // same as before

public class DynamicExample3 {

 public static void main (String[] argv)
 {
 // Create an instance and do stuff with it.
 ObjX x = new ObjX ();
 x.i = 5;
 x.print();

 // Create another instance assigned to the same variable.
 x = new ObjX ();
 x.i = 6;
 x.print();
 }

}

Stack

Heap

Globals

Multiple Objects 2 (HW)

!26

// Multiple dynamic objects
class ObjX {

 int i;

 void print () {
 System.out.println ("i=" + i);

 }

} // same as before

public class DynamicExample4 {

 public static void main (String[] argv)
 {

 // Create an instance and do stuff with it.
 ObjX x = new ObjX ();
 x.i = 5;
 x.print();

 // Create another instance assigned to the same variable.
 ObjX x2 = new ObjX ();
 x2.i = 6;
 x2.print();

 }

}

Stack

Heap

Globals

Arrays of Objects (HW)

!27

// Multiple dynamic objects
class ObjX {

// same as before
}

public class DynamicExample5 {
 public static void main (String[] argv)
 {

 // Make space for 4 ObjX pointers.
 ObjX[] xArray = new ObjX [4];
 // Make each of the 4 pointers point to ObjX instances.
 for (int k=0; k < 4; k++) {

 xArray[k] = new ObjX ();
 }
 // Now assign data to some of them.
 xArray[0].i = 5;
 xArray[1].i = 6;
 // Print all.
 for (ObjX x: xArray) {

 x.print();
 }

 }
}

Stack

Heap

Globals

Arrays of Objects v2 (HW)

!28

// Multiple dynamic objects
class ObjX {

// same as before
}

public class DynamicExample6 {
 public static void main (String[] argv)
 {

 // Make space for 4 ObjX pointers.
 ObjX[] xArray = new ObjX [4];
 // Use fancy for loop syntax.
 for (ObjX x: xArray) {

 x = new ObjX ();
 }
 // Now assign data to some of them.
 xArray[0].i = 5;
 xArray[1].i = 6;
 // Print all using fancy for loop syntax.
 for (ObjX x: xArray) {

 x.print();
 }

 }
}

Stack

Heap

Globals

Where Does it Go?
• In C we had to call "free()" to make sure that the

memory we used was cleaned up

• How come we don't need to do this in Java?

!29

MyLinkedList L =  
 new MyLinkedList();
L.add(0);
L.add(1);
L.add(2);
L.add(3);

L.remItemAt(0);
L.remItemAt(0);

Garbage Collection
• The Java Run Time automatically tracks what

objects are actively being used in memory

!30

MyLinkedList L =  
 new MyLinkedList();
L.add(0);
L.add(1);
L.add(2);
L.add(3);

L.remItemAt(0);
L.remItemAt(0);

0

1
2

3

head

Garbage Collection
• The Java Run Time automatically tracks what

objects are actively being used in memory
• If no variable references something, then that object is

"lost"---can be deleted

!31

MyLinkedList L =  
 new MyLinkedList();
L.add(0);
L.add(1);
L.add(2);
L.add(3);

L.remItemAt(0);
L.remItemAt(0);

0

1
2

3

head

How might it do this?
• How to find which objects on the heap are

reachable (or not)?

• Program knows:
• List of all objects that have been created
• List of references from the Stack and Globals area

!32

Garbage Collection
• The Java Run Time

automatically tracks
what objects are still
used in memory

!33

MyLinkedList L = new MyLinkedList();
L.add(0);
L.add(1);
L.add(2);
L.add(3);

L.remItemAt(1);
L.remItemAt(0);

0

1
2

3

head

Stack

Address Name Contents
10000 List L &50000

Heap
Address Contents
50000 head = &50040
50008 value=0, next=&50024
50024 value=1, next=&50040
50040 value=2, next=&50056
50056 value=3, next=null

Mark, Sweep
• Basic garbage collection algorithm
• Goal: find objects on the heap that are not

referenced by any active object

• Maintain a list with a reference to all heap objects
• Include a "referenced bit" with each object: 1=used, 0=lost

• Mark Phase:
• Start from the root known object (e.g. top of stack)
• Set referenced bit to 1 for every object it references

• Sweep Phase:
• Step through list of all objects, delete anything not referenced

!34

Garbage Collection
• The Java Run Time automatically tracks what

objects are actively being used in memory
• If no variable references something, then that object is

"lost"---can be deleted

!35

MyLinkedList L =  
 new MyLinkedList();
L.add(0);
L.add(1);
L.add(2);
L.add(3);

L.remItemAt(1);
L.remItemAt(0);

0

1
2

3

head

Stack
Address Name Contents
10000 List L &50000

Heap
Address Reachable? Contents
50000 head = &50040
50008 value=0, next=&50024
50024 value=1, next=&50040
50040 value=2, next=&50056
50056 value=3, next=null

Benefits and Costs of GC
• Benefits:

• No "memory leaks" from forgetting to free
• Tighter control helps security

• Drawbacks:
• May need to completely stop application while running

garbage collection
• Leads to unpredictable performance
• Newer garbage collectors support parallelism
• Just because there is a reference, doesn't mean it will be

actively used again in the future

!36

