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From C to Java

Slides from Prof. Tim Wood



Previously...
• We finished up C

• There is plenty more to learn, but you've had a taste

• You are completing Module 3
• linked lists and more complex data structures
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This Time...
• A bit more C
• More on Linked Lists
• Algorithmic thinking, APIs
• Going from C to Java
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Final notes on C
• The benefits of C:

• Low level coding
• Direct access to memory
• Ubiquitous
• Low overhead

• The dangers of C:
• Direct access to memory
• Minimal type checking
• No support for objects
• No variable initialization
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Final notes on C
• Remember the memory model

• This is not C specific
• But other languages hide the details

• Most C bugs are related to  
how you access memory
• If in doubt... draw it out!

• How to learn a new language:
• Small steps!
• Write code, compile, test, repeat
• Look at library reference examples
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source: Head First C



Plan big, code small
• Plan your overall approach

• Write pseudo code for your algorithm
• Figure out what data, functions, objects you will need
• Break the problem into small pieces

• Write code piece by piece
• Never try to write your whole program at once
• Write a small piece and test it out
• Move to the next step when you know one piece works
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The Linked List
• What is a linked list?
• What can it hold?
• How does it compare to...

• An array from the stack?  int days[365];
• or the heap? int *days=malloc(365*sizeof(int));
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The Linked List
• Strength: Very flexible

• Can grow at both ends or in the middle
• Fast to add elements anywhere

• Weakness: Slow access time
• Must traverse through list to find element
• Memory overhead due to "next" pointers
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What functions do we need?
• A linked list should be able to...

• create
• search
• delete
• insert - in middle, at end, etc
• copy the full list
• check if empty
• how many elements?
• retrieve data (don’t want the list to be specific to the data type)
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What functions do we need?
• A linked list should be able to...

• Add a new element at the end
• Add a new element at the start
• Add a new element in sorted order
• Add an element at a specific location
• Delete a specific element
• Delete all elements
• Delete the last N elements
• Delete the first N elements
• Print all the elements
• Return the length of the list
• Create a new empty list
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Application Program Interface
• We just did software engineering!

• SE is about a lot more than writing code and knowing syntax

• An API describes an interface
• What functionality is exposed? What data is available?

• Is our Linked List interface C-specific?
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What data do we need?
• How should we 

represent the list?

• Linked List
• pointer to first Node

• Node 
• String name
• pointer to next Node
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What data do we need?
• How should we 

represent the list?

• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list
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What data do we need?
• How should we 

represent the list?

• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list
• Last Node in list
• Count of nodes, etc
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LL: Functions + Data

• Add a new element at the end
• Add a new element in sorted order
• Delete a specific element
• Delete all elements
• Print all the elements
• Return the length of the list
• Create a new empty list
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• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list



A Linked List in C
• We will use two types of structs

• LList: represents the list as a whole, used by application
• LNode: used for each entry in the list, stores actual data

• This gives a nicer API than requiring 
programmer to understand internals of LNodes
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A Note on NULL
• NULL is a reserved keyword in C

• Often used as a "sentinel" to tell whether a pointer has been 
initialized

• Are undefined variables automatically set to NULL 
in C?
• No!

• We will have to carefully set pointers to NULL by 
ourselves!

• Secret: NULL is actually just the number 0!
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Coding a Linked List
• What is a linked list made of?
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Linked Lists and Memory

int main() {
 struct LList* list;
 struct LNode *a, *b;
 list = NULL; 
 a = NULL; b = NULL; c = NULL;

}

Stack
Address Name Contents

10000
10004
10008

10012
10016

Heap
Address Alloc? Contents

50000
49996
49992
49988
49984
49980
49976
49972
49968

Assume ints and pointers take 4 bytes.

list 45 89 52

struct LNode {
  int data;
LNode* next;

};

struct LList {
  LNode* head;
};



Algorithm to print a LList
• What steps do we need to take?

• Don't worry about C syntax
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//	in	class	solution	
input:	list	we	want	to	print	
return	if	the	list	is	empty	
go	to	first	node	and	print	it	
while	there	is	a	next	node	
			go	to	the	next	node	
		print	that	node
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 - last node (include and stop)
 - empty list



Algorithm to print a LList
• What steps do we need to take?

• Don't worry about C syntax
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Point	at	the	first	node	in	
the	list	

Start	loop...	
		Print	out	the	data	for	the	
current	node	
		If	the	next	node	in	the	
list	is	empty,	exit		

Edge cases: 
 Uninitialized List 
 Empty list 
 End of list



Printing out a L.L.
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LNode
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void LList_print(struct LList *list) {
{

/* Print a list from head to tail. */
   if(list == NULL || list->head == NULL) return;
   struct LNode *p = list->head;
   print(p);
   while(p->next != NULL) {
      p = p->next;
      print(p);
   }

}

input:	list	we	want	to	print	
return	if	the	list	is	empty	
go	to	first	node	and	print	it	
while	there	is	a	next	node	
			go	to	the	next	node	
		print	that	node



Printing out a L.L.
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void LList_print(struct LList *list) {
  struct LNode *node;
  int i = 0;
  if (list == NULL) 
    return;
  node = list->head;
  if (node == NULL)
    return;
  while(1) {
    i++;
    printf("%d: %d\n", i, node->data);
    node = node->next;
    if(node == NULL) {
      break;
    }
  }
}



C-ish Languages
• C++

• Enhances C with support for objects and classes
• Adds the Standard Template Library (STL) for data structures
• Slightly more flexible language
• Just as powerful... just as dangerous

• Objective C and Swift
• Primarily used by Apple
• Superset of C
• Adds objects to C in a more confusing way than C++ / Java
• Extensive library support and custom IDE makes it more bearable

• So does the potential for earning millions on the App Store!
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Moving to Java
• Java Syntax

• You should already know this...
• Use book to refresh on basics

• The textbook is "Head First Java" (2005 edition)
• Readings will be assigned each week
• Read them before LAB
• or else...
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Java
• What is it?

• Object oriented programming language
• A compiler and run time environment

• Java Virtual Machine (JVM)
• Interprets your Java code and translates it for your OS & HW
• Compile your code once, run it anywhere
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Why Java?
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"A simple, object-oriented, distributed, interpreted, 
robust, secure, architecture-neutral, portable, 

high-performance, multithreaded, dynamic 
language."



Why Not Java?
• Java takes the "lowest common denominator" 

approach to supporting OS features
• JVM must be cross platform, so cannot exploit specifics

• For efficient, high-performance scientific code, it's 
better to use C/C++
• Memory management in Java is the main slowdown

• For low-level system stuff, you have to use C/C++
• The Windows or Linux OS can't be run inside a JVM...
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The Real Reason...
• Java has become hugely popular:

• Objects, type checking, automated memory 
management, and run-time system
• Prevent bugs or make finding and eliminating them easier

• It will be easier for you to write better code, 
improving productivity

• But, of course, it's not perfect
!33

Language encourages good  
programming practices



The Simplest Java
• Sick of "Hello World" yet?

• Must be put in a file called "HelloWorld.java"
• Unlike C, file name is important and must match class name

• Program start point: public static void main(...)
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public class HelloWorld {

    public static void main (String[] argv)
    {
       String s = "Hello World!";
        System.out.println(s);
    }

}



Primitive Data Types
• Java has the same basic data types as C

• short, int, long, float, double, char
• No unsigned types

• Plus two more
• byte (8 byte number) and boolean (T or F)

• All data types (except Boolean) have a precisely 
defined size on all platforms
• Different from C where size depends on architecture: 16 vs 

32 vs 64bit ints
• All variables are initialized to zero, false, or null
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Java Primitives
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Source: Art & Science of Java http://people.reed.edu/~jerry/121/materials/artsciencejava.pdf

http://people.reed.edu/~jerry/121/materials/artsciencejava.pdf


Compiling and Running
• javac = compiler

• Differences from C:
• Standard names---always becomes <ClassName>.class
• Each class gets its own compiled file (not just a.out)
• .class file is java bytecode---must be interpreted by the JVM

• Not platform specific assembly instructions

• java = run time
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$ javac HelloWorld.java       # prints nothing on success
$ ls
HelloWorld.class     HelloWorld.java      

$ java HelloWorld       # class name to run
Hello World!



Pro Tip
• In Unix/Linux if you want to match several file 

names you can use the * symbol
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$ javac *.java
$ ls
// Every .java file will now be compiled into .class
// or you will see lots of errors



Linked List and Java
• How do we transform C to Java?
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int main() {
 struct LList* list;
 struct LNode *a, *b, *c;
 list = NULL; 
 a = NULL; b = NULL; c = NULL;
 list = malloc(sizeof(struct LList));
 a = malloc(sizeof(struct LNode));
 b = malloc(sizeof(struct LNode));
 c = malloc(sizeof(struct LNode));
 list->head = a;
 a->data = 45;
 a->next = b;
 b->data = 89;
 b->next = c;
 c->data = 52;
 c->next = NULL; 
}

struct LNode {
  int data;

LNode* next;
};

struct LList {
  LNode* head;
};



Objects and Classes in Java
• In Java:

• A class is type of object
• All objects have a class
• Primitives (int, float, etc) and functions are not objects

• Classes contain data and functions
• An object instantiates that data

• Class Constructor
• Used to create new objects
• Initialize variables
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public class Hello {
public static void main (){

System.out.println("hi.");
}

}

public class Car {
public int x;
public int y;

public Car(int x, int y) {
this.x = x;
this.y = y;

}
public void draw() {

// make a picture
}



Working with objects

• Does this code work?
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public class Car {
public int x;
public int y;

public Car(int x, int y) {
this.x = x;
this.y = y;

}
public void draw() {

// make a picture
}
public static void main (){

    Car mercedes;
 
    mercedes.x = 34;
    mercedes.y = 11;
    mercedes.draw();
  }
}



Creating new Objects
• To use an object we need a reference to it

• Use the new command to instantiate an object

• What do you think is happening in memory?
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public static void main(...)
{

Car chevy;
Car honda;
honda = new Car(10, 20);



Creating new Objects
• To use an object we need a reference to it

• Use the new command to instantiate an object
• Reserves memory on the Heap for that object class

• Each new object gets its own chunk of memory
• But they share functions 

and static class variables
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public static void main(...)
{

Car chevy;
Car honda;
honda = new Car(10, 20);

chevy null

honda 0x1423000

0x1423000 x 10

0x1423004 y 20

Stack Heap


