CS 2113
Software Engineering

From C to Java

Slides from Prof. Tim Wood

Previously...
» We finished up C

» There is plenty more to learn, but you've had a taste

* You are completing Module 3
* linked lists and more complex data structures

This Time...

* A bit more C

* More on Linked Lists

» Algorithmic thinking, APls
 Going from C to Java

Final notes on C
* The benefits of C:

» Low level coding

» Direct access to memory
- Ubiquitous

- Low overhead

- The dangers of C:

 Direct access to memory
- Minimal type checking
* No support for objects
» No variable initialization

Final notes on C

p Hl%hﬁ{ 3dd ress

* Remember the memory model M@gg SO

- This is not C specific AR ANy
- But other languages hide the details R ARE -8
W EROWE
» Most C bugs are related to JEETO
how you access memory
* |f in doubt... draw it out!
- How to learn a new language: | — —~ "~
V4025779 %% 5 9 %.7%
- Small steps! 625205 52 2 4 aihi % %
- Write code, compile, test, repeat H :mfé'ggiﬁm_imJ ‘ 2
- Look at library reference examples — §|[urx stmis. Sl @il
| | | (-
/|

" Lowest Jddrcn

Plan bi1g, code small

» Plan your overall approach

» Write pseudo code for your algorithm
 Figure out what data, functions, objects you will need
» Break the problem into small pieces

» Write code piece by piece

* Never try to write your whole program at once
- Write a small piece and test it out
* Move to the next step when you know one piece works

The Linked List

« What is a linked list?
« What can it hold?

» How does it compare to...

* An array from the stack? int days[365];
- orthe heap? int *days=malloc(365*sizeof(int));

The Linked List

» Strength: Very flexible

- Can grow at both ends or in the middle

- Fast to add elements anywhere

 Weakness: Slow access time

» Must traverse through list to find element
* Memory overhead due to "next" pointers

Dynamic Linked List

.

—r

3

S
!V,{

!‘

END

Fixed Size Array

What functions do we need?
A linked list should be able to...

What functions do we need?
A linked list should be able to...

Application Program Interface

» We just did software engineering!
- SE is about a lot more than writing code and knowing syntax

» An API describes an interface
- What functionality is exposed? What data is available?

* |s our Linked List interface C-specific?

12

What data do we need?

 How should we

represent the list? Dynamic Linked List
» Linked List Harry /. Hagrid
» pointer to first Node Draco

° NOde Dum]%ledﬁre
- String name Hermione lﬁ ——
 pointer to next Node Neville
Luna 4

13

What data do we need?

» How should we
represent the list? Dynamic Linked List

- Node data type Harry /. Hagrid

« Name T Draco

. HOUSG Dum]%led%re

* Wand type Hermione

+ Next node . Lavlav f
Neville Z

| 4
Luna

- List data type

* First Node In list

List

14

What data do we need?

 How should we

represent the list?

* Node data type

 Name
* House
- Wand type
* Next node

- List data type

* First Node In list
« Last Node In list
« Count of nodes, etc

Dynamic Linked List

Harry /. Hagrid
Draco
Dum]%led%re

Hermione l%
Neville

Luna

List

15

[.I.: Functions + Data

* Node data type

Name
- House
- Wand type
« Next node

- List data type
 First Node in list

16

A Linked List in C

» We will use two types of structs

 LList: represents the list as a whole, used by application
* LNode: used for each entry in the list, stores actual data

» This gives a nicer APl than requiring
programmer to understand internals of LNodes

lots of
these

17

A Note on NULL

* NULL is a reserved keyword in C

- Often used as a "sentinel" to tell whether a pointer has been
initialized

» Are undefined variables automatically set to NULL
in C?
- No!

» We will have to carefully set pointers to NULL by
ourselves!

- Secret: NULL is actually just the number 0!

18

Coding a Linked List

« What is a linked list made of?

LList

LNode
name name
latitude latitude
longitude longitude

next

next

19

Linked Lists and Memory

struct LNode { struct LList { Address Contents

int data;
! LNode* head; 10000
LNode* next; 10004

10008
10012
int main() { 10016

struct LList* list;
struct LNode *a, *b;

list = NULL; Address Contents

a = NULL; b = NULL; ¢ = 50000

49996
49992
49988
49984
49980
49976
49972
49968

list 45 89 52

Assume ints and pointers take 4 bytes.

Algorithm to print a LList

» What steps do we need to take?

+ Don't worry about C syntax

// 1in class solution
input: list we want to print
return 1f the list is empty
go to first node and print it
while there 1s a next node

go to the next node

print that node

Harry (. Hagrid
DraCo

Hermione

Neville

Luna

22

Algorithm to print a LList

- What steps do we need to take?
+ Don't worry about C syntax

Point at the first node in
the list
Harry (. Hagrid

Start loop... \ pra&o

Print out the data for the Y A
current node Herthione

If the next node in the — Lav_ av)

. . . eville
list 1s empty, exit /

LLuna

23

Printing out a L.L.

head

LNode LNode
data data
next next

void LList print(struct LList *list) {

{

/* Print a list from head to tail. */
if(list == NULL || list->head == NULL) return;

struct LNode *p =

print (p);

list->head;

while(p->next != NULL) {

p = p->next;
print(p);

input: list we want to print
return 1f the list 1is empty

go to first node and print it
while there 1s a next node

go to the next node

print that node

NULL

24

Printine outa L.L.

LList

void LList print(struct LList *list) {
struct LNode *node;
int 1 = 0;
if (list == NULL)
return;
node = list->head;
if (node == NULL)
return;
while(1l) {
i++;
printf("%d: %d\n", i, node->data);
node = node->next;
if (node == NULL) {
break;
}
}
}

25

C-1sh Languages

» C++

- Enhances C with support for objects and classes

- Adds the Standard Template Library (STL) for data structures
- Slightly more flexible language

- Just as powerful... just as dangerous

 Objective C and Swift

* Primarily used by Apple
« Superset of C
 Adds objects to C in a more confusing way than C++ / Java

» Extensive library support and custom IDE makes it more bearable
- So does the potential for earning millions on the App Store!

28

Moving to Java

- Java Syntax

 You should already know this...
« Use book to refresh on basics

» The textbook is "Head First Java" (2005 edition)

- Readings will be assigned each week
- Read them before LAB
* Or else...

29

Java
 What is it?

» Object oriented programming language
» A compiler and run time environment

- Java Virtual Machine (JVM)

» Interprets your Java code and translates it for your OS & HW
- Compile your code once, run it anywhere

30

Why Java?

"A simple, object-oriented, distributed, interpreted,
robust, secure, architecture-neutral, portable,

high-performance, multithreaded, dynamic
language.”

31

Why Not Java?

« Java takes the "lowest common denominator"

approach to supporting OS features
- JVM must be cross platform, so cannot exploit specifics

» For efficient, high-performance scientific code, it's
better to use C/C++
- Memory management in Java is the main slowdown

 For low-level system stuff, you have to use C/C++
» The Windows or Linux OS can't be run inside a JVM...

32

The Real Reason...

» Java has become hugely popular:

Language encourages good
programming practices

 Objects, type checking, automated memory
management, and run-time system
* Prevent bugs or make finding and eliminating them easier

» |t will be easier for you to write better code,
improving productivity

» But, of course, it's not perfect

33

The Simplest Java

» Sick of "Hello World" yet?

public class HelloWorld {

public static void main (String[] argv)

{
String s = "Hello World!";

System.out.println(s);

» Must be put in a file called "HelloWorld.java"
- Unlike C, file name is important and must match class name

° PrOgram start pOin’[: public static void main(...)

34

Primitive Data Types

- Java has the same basic data types as C

- short, int, long, float, double, char
* No unsigned types

* Plus two more
* byte (8 byte number) and boolean (T or F)

- All data types (except Boolean) have a precisely
defined size on all platforms

- Different from C where size depends on architecture: 16 vs
32 vs 64bit ints

 All variables are initialized to zero, false, or null

35

Java Primitives

m Primitive types in Java

Type Domain Common operations
byte 8-bit integers in the range —128 to 127 The arithmetic operators:
+ add * multiply
short 16-bit integers in the range ~32768 to 32767 | — Subwact / divide
% remainder
ot 32-bit integers in the range The relational operators:
n ~2147483648 to 2147483647 == equal I= not equal
lon 64-bit integers in the range < lessthan <= less orequal
g ~9223372036854775808 to 9223372036854775807| > greater than >= greater or equal
£1 32-bit floating-point numbers in the range
oat +14x 107 to £3.4028235 x 10°° The arithmetic operators except %
double 64-bit floating-point numbers in the range The relational operators
+4.39 x 1077 to +£1.7976931348623157 x 10™"
boolean the values true and false Ine logical operators:
&& and || or ! not
char 16-bit characters encoded using Unicode The relational operators

Source: Art & Science of Java http://people.reed.edu/~jerry/121/materials/artsciencejava.pdf

36

http://people.reed.edu/~jerry/121/materials/artsciencejava.pdf

Compiling and Running

* javac = compliler

S javac HelloWorld.java # prints nothing on success
S 1s
HelloWorld.class HelloWorld. java

 Differences from C:

- Standard names---always becomes <ClassName>.class
» Each class gets its own compiled file (not just a.out)

- .class file is java bytecode---must be interpreted by the JVM
 Not platform specific assembly instructions

* java = run time

S java HelloWorld # class name to run
Hello World!

37

Pro Tip

* In Unix/Linux if you want to match several file
names you can use the * symbol

S javac *.java

S 1s

// Every .java file will now be compiled into .class
// or you will see lots of errors

38

[.inked List and Java

 How do we transform C to Java?

struct LNode ({
int data;
LNode* next;

}i

struct LList {
LNode* head;

}i

int main() {

struct LList* list;

struct LNode *a, *b, *c;

list = NULL;

a = NULL; b = NULL; c = NULL;

list = malloc(sizeof(struct LList));
a = malloc(sizeof (struct LNode));
b = malloc(sizeof(struct LNode));

¢ = malloc(sizeof (struct LNode));
list->head = a;
a->data = 45;
a->next = b
b->data =
b->next = c;
c->data = 52;
c->next = NULL;

|

(00}

O =
we

Objects and Classes 1n Java

. public class Hello {
° Ir] \JEi\/Ei- public static void main (){
. : : System.out.println("hi.");
A clas_s IS type of object)
» All objects have a class ;

 Primitives (int, float, etc) and functions are not objects

* Classes contain data and functions
» An object instantiates that data

public class Car {
blic int x;
» Class Constructor \iﬁmiﬁ int v;
» Used to create new objects public Car(int x, int v) {

 |nitialize variables EalEons = o
this.y = y;

}
public void draw() ({

// make a picture

}

Working with objects

public class Car {

public int x;
public int y;

public Car(int x, int y) {
this.x = x;
this.y = y;

}

public void draw() {
// make a picture

}

public static void main () {
Car mercedes;

mercedes.x = 34;
mercedes.y = 11;
mercedes.draw() ;

}

« Does this code work?

41

Creating new Objects

» To use an object we need a reference to it

» Use the new command to instantiate an object

- What do you think is happening in memory?

public static void main(...)
{
Car chevy;
Car honda;
honda = new Car (10, 20);

43

Creating new Objects

» To use an object we need a reference to it

» Use the new command to instantiate an object
- Reserves memory on the Heap for that object class

- Each new object gets its own chunk of memory

- But they share functions . —
]] public static void main(...)
and static class variables |

Car chevy;
Car honda;
honda = new Car (10, 20);

chevy null / 0x1423000 X 10
0x1423000 0x1423004 20

honda

44

