
CS 2113 
Software Engineering

From C to Java

Slides from Prof. Tim Wood



Previously...
• We finished up C

• There is plenty more to learn, but you've had a taste

• You are completing Module 3
• linked lists and more complex data structures

!2



This Time...
• A bit more C
• More on Linked Lists
• Algorithmic thinking, APIs
• Going from C to Java

!3



Final notes on C
• The benefits of C:

• Low level coding
• Direct access to memory
• Ubiquitous
• Low overhead

• The dangers of C:
• Direct access to memory
• Minimal type checking
• No support for objects
• No variable initialization

!5



Final notes on C
• Remember the memory model

• This is not C specific
• But other languages hide the details

• Most C bugs are related to  
how you access memory
• If in doubt... draw it out!

• How to learn a new language:
• Small steps!
• Write code, compile, test, repeat
• Look at library reference examples

!6
source: Head First C



Plan big, code small
• Plan your overall approach

• Write pseudo code for your algorithm
• Figure out what data, functions, objects you will need
• Break the problem into small pieces

• Write code piece by piece
• Never try to write your whole program at once
• Write a small piece and test it out
• Move to the next step when you know one piece works

!7



The Linked List
• What is a linked list?
• What can it hold?
• How does it compare to...

• An array from the stack?  int days[365];
• or the heap? int *days=malloc(365*sizeof(int));

!8



The Linked List
• Strength: Very flexible

• Can grow at both ends or in the middle
• Fast to add elements anywhere

• Weakness: Slow access time
• Must traverse through list to find element
• Memory overhead due to "next" pointers

!9

Fixed Size ArrayDynamic Linked List

END



What functions do we need?
• A linked list should be able to...

• create
• search
• delete
• insert - in middle, at end, etc
• copy the full list
• check if empty
• how many elements?
• retrieve data (don’t want the list to be specific to the data type)

!10



What functions do we need?
• A linked list should be able to...

• Add a new element at the end
• Add a new element at the start
• Add a new element in sorted order
• Add an element at a specific location
• Delete a specific element
• Delete all elements
• Delete the last N elements
• Delete the first N elements
• Print all the elements
• Return the length of the list
• Create a new empty list

!11



Application Program Interface
• We just did software engineering!

• SE is about a lot more than writing code and knowing syntax

• An API describes an interface
• What functionality is exposed? What data is available?

• Is our Linked List interface C-specific?

!12



What data do we need?
• How should we 

represent the list?

• Linked List
• pointer to first Node

• Node 
• String name
• pointer to next Node

!13

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

Dynamic Linked List

END



What data do we need?
• How should we 

represent the list?

• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list

!14

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

Dynamic Linked List

END

List



What data do we need?
• How should we 

represent the list?

• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list
• Last Node in list
• Count of nodes, etc

!15

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

Dynamic Linked List

END

List



LL: Functions + Data

• Add a new element at the end
• Add a new element in sorted order
• Delete a specific element
• Delete all elements
• Print all the elements
• Return the length of the list
• Create a new empty list

!16

• Node data type
• Name
• House
• Wand type
• Next node

• List data type
• First Node in list



A Linked List in C
• We will use two types of structs

• LList: represents the list as a whole, used by application
• LNode: used for each entry in the list, stores actual data

• This gives a nicer API than requiring 
programmer to understand internals of LNodes

!17

LList
head

LNode
data
next

NULL

one of 
these

lots of 
these

LNode
data
next



A Note on NULL
• NULL is a reserved keyword in C

• Often used as a "sentinel" to tell whether a pointer has been 
initialized

• Are undefined variables automatically set to NULL 
in C?
• No!

• We will have to carefully set pointers to NULL by 
ourselves!

• Secret: NULL is actually just the number 0!

!18



Coding a Linked List
• What is a linked list made of?

!19

LNode
name

latitude
longitude

next

LNode
name

latitude
longitude

next

LList
head



Linked Lists and Memory

int main() {
 struct LList* list;
 struct LNode *a, *b;
 list = NULL; 
 a = NULL; b = NULL; c = NULL;

}

Stack
Address Name Contents

10000
10004
10008

10012
10016

Heap
Address Alloc? Contents

50000
49996
49992
49988
49984
49980
49976
49972
49968

Assume ints and pointers take 4 bytes.

list 45 89 52

struct LNode {
  int data;
LNode* next;

};

struct LList {
  LNode* head;
};



Algorithm to print a LList
• What steps do we need to take?

• Don't worry about C syntax

!22

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

NULL

List

//	in	class	solution	
input:	list	we	want	to	print	
return	if	the	list	is	empty	
go	to	first	node	and	print	it	
while	there	is	a	next	node	
			go	to	the	next	node	
		print	that	node

Edge cases:
 - last node (include and stop)
 - empty list



Algorithm to print a LList
• What steps do we need to take?

• Don't worry about C syntax

!23

Harry

Draco

Hermione

Neville

Dumbledore

Lavlav

Luna

Hagrid

END

List

Point	at	the	first	node	in	
the	list	

Start	loop...	
		Print	out	the	data	for	the	
current	node	
		If	the	next	node	in	the	
list	is	empty,	exit		

Edge cases: 
 Uninitialized List 
 Empty list 
 End of list



Printing out a L.L.

!24

LList
head

LNode
data
next

NULL

LNode
data
next

void LList_print(struct LList *list) {
{

/* Print a list from head to tail. */
   if(list == NULL || list->head == NULL) return;
   struct LNode *p = list->head;
   print(p);
   while(p->next != NULL) {
      p = p->next;
      print(p);
   }

}

input:	list	we	want	to	print	
return	if	the	list	is	empty	
go	to	first	node	and	print	it	
while	there	is	a	next	node	
			go	to	the	next	node	
		print	that	node



Printing out a L.L.

!25

LList
head

LNode
data
next

NULL

LNode
data
next

void LList_print(struct LList *list) {
  struct LNode *node;
  int i = 0;
  if (list == NULL) 
    return;
  node = list->head;
  if (node == NULL)
    return;
  while(1) {
    i++;
    printf("%d: %d\n", i, node->data);
    node = node->next;
    if(node == NULL) {
      break;
    }
  }
}



C-ish Languages
• C++

• Enhances C with support for objects and classes
• Adds the Standard Template Library (STL) for data structures
• Slightly more flexible language
• Just as powerful... just as dangerous

• Objective C and Swift
• Primarily used by Apple
• Superset of C
• Adds objects to C in a more confusing way than C++ / Java
• Extensive library support and custom IDE makes it more bearable

• So does the potential for earning millions on the App Store!

!28



Moving to Java
• Java Syntax

• You should already know this...
• Use book to refresh on basics

• The textbook is "Head First Java" (2005 edition)
• Readings will be assigned each week
• Read them before LAB
• or else...

!29



Java
• What is it?

• Object oriented programming language
• A compiler and run time environment

• Java Virtual Machine (JVM)
• Interprets your Java code and translates it for your OS & HW
• Compile your code once, run it anywhere

!30



Why Java?

!31

"A simple, object-oriented, distributed, interpreted, 
robust, secure, architecture-neutral, portable, 

high-performance, multithreaded, dynamic 
language."



Why Not Java?
• Java takes the "lowest common denominator" 

approach to supporting OS features
• JVM must be cross platform, so cannot exploit specifics

• For efficient, high-performance scientific code, it's 
better to use C/C++
• Memory management in Java is the main slowdown

• For low-level system stuff, you have to use C/C++
• The Windows or Linux OS can't be run inside a JVM...

!32



The Real Reason...
• Java has become hugely popular:

• Objects, type checking, automated memory 
management, and run-time system
• Prevent bugs or make finding and eliminating them easier

• It will be easier for you to write better code, 
improving productivity

• But, of course, it's not perfect
!33

Language encourages good  
programming practices



The Simplest Java
• Sick of "Hello World" yet?

• Must be put in a file called "HelloWorld.java"
• Unlike C, file name is important and must match class name

• Program start point: public static void main(...)

!34

public class HelloWorld {

    public static void main (String[] argv)
    {
       String s = "Hello World!";
        System.out.println(s);
    }

}



Primitive Data Types
• Java has the same basic data types as C

• short, int, long, float, double, char
• No unsigned types

• Plus two more
• byte (8 byte number) and boolean (T or F)

• All data types (except Boolean) have a precisely 
defined size on all platforms
• Different from C where size depends on architecture: 16 vs 

32 vs 64bit ints
• All variables are initialized to zero, false, or null

!35



Java Primitives

!36

Source: Art & Science of Java http://people.reed.edu/~jerry/121/materials/artsciencejava.pdf

http://people.reed.edu/~jerry/121/materials/artsciencejava.pdf


Compiling and Running
• javac = compiler

• Differences from C:
• Standard names---always becomes <ClassName>.class
• Each class gets its own compiled file (not just a.out)
• .class file is java bytecode---must be interpreted by the JVM

• Not platform specific assembly instructions

• java = run time

!37

$ javac HelloWorld.java       # prints nothing on success
$ ls
HelloWorld.class     HelloWorld.java      

$ java HelloWorld       # class name to run
Hello World!



Pro Tip
• In Unix/Linux if you want to match several file 

names you can use the * symbol

!38

$ javac *.java
$ ls
// Every .java file will now be compiled into .class
// or you will see lots of errors



Linked List and Java
• How do we transform C to Java?

!39

int main() {
 struct LList* list;
 struct LNode *a, *b, *c;
 list = NULL; 
 a = NULL; b = NULL; c = NULL;
 list = malloc(sizeof(struct LList));
 a = malloc(sizeof(struct LNode));
 b = malloc(sizeof(struct LNode));
 c = malloc(sizeof(struct LNode));
 list->head = a;
 a->data = 45;
 a->next = b;
 b->data = 89;
 b->next = c;
 c->data = 52;
 c->next = NULL; 
}

struct LNode {
  int data;

LNode* next;
};

struct LList {
  LNode* head;
};



Objects and Classes in Java
• In Java:

• A class is type of object
• All objects have a class
• Primitives (int, float, etc) and functions are not objects

• Classes contain data and functions
• An object instantiates that data

• Class Constructor
• Used to create new objects
• Initialize variables

!40

public class Hello {
public static void main (){

System.out.println("hi.");
}

}

public class Car {
public int x;
public int y;

public Car(int x, int y) {
this.x = x;
this.y = y;

}
public void draw() {

// make a picture
}



Working with objects

• Does this code work?

!41

public class Car {
public int x;
public int y;

public Car(int x, int y) {
this.x = x;
this.y = y;

}
public void draw() {

// make a picture
}
public static void main (){

    Car mercedes;
 
    mercedes.x = 34;
    mercedes.y = 11;
    mercedes.draw();
  }
}



Creating new Objects
• To use an object we need a reference to it

• Use the new command to instantiate an object

• What do you think is happening in memory?

!43

public static void main(...)
{

Car chevy;
Car honda;
honda = new Car(10, 20);



Creating new Objects
• To use an object we need a reference to it

• Use the new command to instantiate an object
• Reserves memory on the Heap for that object class

• Each new object gets its own chunk of memory
• But they share functions 

and static class variables

!44

public static void main(...)
{

Car chevy;
Car honda;
honda = new Car(10, 20);

chevy null

honda 0x1423000

0x1423000 x 10

0x1423004 y 20

Stack Heap


